oncepts, Techniques, and
of Computer Progra\»

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Concepts, Techniques, and Models
of Computer Programming

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

This page intentionally left blank

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Concepts, Techniques, and Models
of Computer Programming

by
Peter Van Roy
Seif Haridi

The MIT Press
Cambridge, Massachusetts
London, England

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

(©2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in IATEX 2¢ by the authors and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Van Roy, Peter.
Concepts, techniques, and models of computer programming / Peter Van Roy, Seif Haridi
p. cm.
Includes bibliographical references and index.
ISBN 0-262-22069-5
1. Computer programming. I. Haridi, Seif. II. Title.

QAT6.6.V36 2004
005.1—dc22 2003065140

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Short Contents

Preface xiii

Running the Example Programs Xxix
1 Introduction to Programming Concepts 1
I GENERAL COMPUTATION MODELS 27
2 Declarative Computation Model 29
3 Declarative Programming Techniques 111
4 Declarative Concurrency 233
5 Message-Passing Concurrency 345
6 Explicit State 405
7 Object-Oriented Programming 489
8 Shared-State Concurrency 569
9 Relational Programming 621
II SPECIALIZED COMPUTATION MODELS 677
10 Graphical User Interface Programming 679
11 Distributed Programming 707
12 Constraint Programming 749
IIT SEMANTICS 7T

13 Language Semantics 779

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Short Contents

IV APPENDIXES

A

B
C
D

Mozart System Development Environment
Basic Data Types

Language Syntax

General Computation Model

References

Index

833

843

853

863

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Table of Contents

1

2

Preface xiii
Running the Example Programs Xxix
Introduction to Programming Concepts 1
1.1 Acalculator 1
1.2 Variables 2
1.3 Functions. 2
1.4 Lists e e e 4
1.5 Functionsover lists 7
1.6 Correctness e 9
1.7 Complexity 10
1.8 Lazyevaluation oo 11
1.9 Higher-order programming 13
1.10 Concurrency v vi i e e e 14
1.11 Dataflow 15
1.12 Explicit state Lo 16
1.13 Objects o . e 17
1.14 Classes v i e e e 18
1.15 Nondeterminism and time 20
1.16 Atomicity 21
1.17 Where do we go from here? L. 22
1.18 EXercises o o e e e e e e e e e e e 23

GENERAL COMPUTATION MODELS 27
Declarative Computation Model 29
2.1 Defining practical programming languages 30
2.2 The single-assignment store L. 42
2.3 Kernel language 49
2.4 Kernel language semantics 56
2.5 Memory management 72
2.6 From kernel language to practical language 79
2.7 Exceptions 90

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Contents

2.8
2.9

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3
0.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5

Advanced topics
Exercises

Declarative Programming Techniques

What is declarativeness? oL
Iterative computation
Recursive computation
Programming with recursion oL,
Time and space efficiency
Higher-order programming
Abstract data types
Nondeclarativeneeds
Program design in the small
Exerciseso

Declarative Concurrency

The data-driven concurrent model
Basic thread programming techniques
Streams
Using the declarative concurrent model directly
Lazy execution.o Lo
Soft real-time programming
The Haskell language,
Limitations and extensions of declarative programming
Advanced topics
Historical notes o
Exercises

Message-Passing Concurrency

The message-passing concurrent model
Port objects L
Simple message protocols
Program design for concurrency
Lift control system
Using the message-passing model directly
The Erlang language
Advanced topic
Exercises

Explicit State

State and system building oo
The declarative model with explicit state
Data abstraction L oL
Stateful collections

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

6.6 Reasoning with state

6.7 Program design in the large L. 450
6.8 Casestudies L 463
6.9 Advanced topics 479
6.10 Exercises 482
7 Object-Oriented Programming 489
7.1 Imheritance Lo 491
7.2 Classes as complete data abstractions 492
7.3 Classes as incremental data abstractions 502
7.4 Programming with inheritance 0oL 518
7.5 Relation to other computation models 537
7.6 Implementing the object system 545
7.7 The Java language (sequential part) 551
7.8 Activeobjects 556
7.9 Exercises 567
8 Shared-State Concurrency 569
8.1 The shared-state concurrent model 573
8.2 Programming with concurrency 573
83 Locks 582
8.4 Monitors 592
8.5 Transactions 600
8.6 The Java language (concurrent part) 615
8.7 Exercises 618
9 Relational Programming 621
9.1 The relational computation model 623
9.2 Further examples Lo oo 627
9.3 Relation to logic programming 631
9.4 Natural language parsing oL 641
9.5 A grammar interpreter L 650
9.6 Databases 654
9.7 The Prolog language 660
9.8 Exercises e 671
11 SPECIALIZED COMPUTATION MODELS 677
10 Graphical User Interface Programming 679
10.1 The declarative/procedural approach 681
10.2 Using the declarative/procedural approach 682
10.3 The Prototyper interactive learning tool 689
104 Casestudies 690

10.5 Implementing the GUl tool 703

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Contents

10.6 Exercises

11 Distributed Programming
11.1 Taxonomy of distributed systems
11.2 The distribution model oL
11.3 Distribution of declarative data
11.4 Distribution of state. o o
11.5 Network awareness
11.6 Common distributed programming patterns
11.7 Distribution protocols oo
11.8 Partial failure
11.9 Security
11.10 Building applications L oL
11.11 Exercises oo oo o e

12 Constraint Programming
12.1 Propagate-and-search oo,
12.2 Programming techniques oL,
12.3 The constraint-based computation model
12.4 Defining and using computation spaces
12.5 Implementing the relational computation model
126 Exerciseso

IIT SEMANTICS

13 Language Semantics
13.1 The general computation model L.
13.2 Declarative concurrencyo
13.3 Eight computation models
13.4 Semantics of common abstractions.
13.5 Historical notes L o
13.6 Exercises e

IV APPENDIXES

A Mozart System Development Environment
A.1 Interactive interface
A.2 Command line interface

B Basic Data Types
B.1 Numbers (integers, floats, and characters)
B.2 Literals (atoms and names), .
B.3 Recordsand tuples L.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

B.4 Chunks (limited records)

B5 Lists
B.6 Strings
B.7 Virtual strings

Language Syntax

C.1 Interactive statements,
C.2 Statements and expressions.
C.3 Nonterminals for statements and expressions
C.4 Operators
C.h Keywords e
C.6 Lexical syntax
General Computation Model

D.1 Creative extension principle
D.2 Kernel language o
D.3 Concepts
D.4 Different forms of state oL
D.5 Other concepts

D.6 Layered language design
References

Index

833
834
834
836
836
839
839

843
844
845
846
849
850
850

853

863

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

This page intentionally left blank

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

Six blind sages were shown an elephant and met to discuss their experience. “It’s
wonderful,” said the first, “an elephant is like a rope: slender and flexible.” “No,
no, not at all,” said the second, “an elephant is like a tree: sturdily planted on the
ground.” “Marvelous,” said the third, “an elephant is like a wall.” “Incredible,”
said the fourth, “an elephant is a tube filled with water.” “What a strange
piecemeal beast this is,” said the fifth. “Strange indeed,” said the sixth, “but
there must be some underlying harmony. Let us investigate the matter further.”
— Freely adapted from a traditional Indian fable.

A programming language is like a natural, human language in that it favors
certain metaphors, images, and ways of thinking.
— Mindstorms: Children, Computers, and Powerful Ideas, Seymour Papert (1980)

One approach to the study of computer programming is to study programming
languages. But there are a tremendously large number of languages, so large that
it is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques in using them, not on
programming languages. The concepts are organized in terms of computation mod-
els. A computation model is a formal system that defines how computations are
done. There are many ways to define computation models. Since this book is in-
tended to be practical, it is important that the computation model be directly
useful to the programmer. We therefore define it in terms of concepts that are
important to programmers: data types, operations, and a programming language.
The term computation model makes precise the imprecise notion of “programming
paradigm.” The rest of the book talks about computation models and not program-
ming paradigms. Sometimes we use the phrase “programming model.” This refers
to what the programmer needs: the programming techniques and design principles
made possible by the computation model.

Each computation model has its own set of techniques for programming and
reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many well-known models as well as some less-known models. The
main criterion for presenting a model is whether it is useful in practice.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

Each computation model is based on a simple core language called its kernel lax -
guage. The kernel languages are introduced in a progressive way, by adding concepts
one by one. This lets us show the deep relationships between the different models.
Often, adding just one new concept makes a world of difference in programming. For
example, adding destructive assignment (explicit state) to functional programming
allows us to do object-oriented programming.

When should we add a concept to a model and which concept should we add? We
touch on these questions many times. The main criterion is the creative extension
principle. Roughly, a new concept is added when programs become complicated for
technical reasons unrelated to the problem being solved. Adding a concept to the
kernel language can keep programs simple, if the concept is chosen carefully. This is
explained further in appendix D. This principle underlies the progression of kernel
languages presented in the book.

A nice property of the kernel language approach is that it lets us use different
models together in the same program. This is usually called multiparadigm pro-
gramming. It is quite natural, since it means simply to use the right concepts for
the problem, independent of what computation model they originate from. Mul-
tiparadigm programming is an old idea. For example, the designers of Lisp and
Scheme have long advocated a similar view. However, this book applies it in a
much broader and deeper way than has been previously done.

From the vantage point of computation models, the book also sheds new light on
important problems in informatics. We present three such areas, namely graphical
user interface design, robust distributed programming, and constraint program-
ming. We show how the judicious combined use of several computation models can
help solve some of the problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to particular
computation models. For example, Java and Smalltalk are based on an object-
oriented model. Haskell and Standard ML are based on a functional model. Prolog
and Mercury are based on a logic model. Not all interesting languages can be so
classified. We mention some other languages for their own merits. For example, Lisp
and Scheme pioneered many of the concepts presented here. Erlang is functional,
inherently concurrent, and supports fault-tolerant distributed programming.

We single out four languages as representatives of important computation models:
Erlang, Haskell, Java, and Prolog. We identify the computation model of each
language in terms of the book’s uniform framework. For more information about
them we refer readers to other books. Because of space limitations, we are not able
to mention all interesting languages. Omission of a language does not imply any
kind of value judgment.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Goals of the book

Teaching programming

The main goal of the book is to teach programming as a unified discipline with a
scientific foundation that is useful to the practicing programmer. Let us look closer
at what this means.

What is programming?

We define programming, as a general human activity, to mean the act of extending
or changing a system’s functionality. Programming is a widespread activity that is
done both by nonspecialists (e.g., consumers who change the settings of their alarm
clock or cellular phone) and specialists (computer programmers, the audience for
this book).

This book focuses on the construction of software systems. In that setting, pro-
gramming is the step between the system’s specification and a running program
that implements it. The step consists in designing the program’s architecture and
abstractions and coding them into a programming language. This is a broad view,
perhaps broader than the usual connotation attached to the word “programming.”
It covers both programming “in the small” and “in the large.” It covers both
(language-independent) architectural issues and (language-dependent) coding is-
sues. It is based more on concepts and their use rather than on any one program-
ming language. We find that this general view is natural for teaching programming.
It is unbiased by limitations of any particular language or design methodology.
When used in a specific situation, the general view is adapted to the tools used,
taking into account their abilities and limitations.

Both science and technology

Programming as defined above has two essential parts: a technology and its scientific
foundation. The technology consists of tools, practical techniques, and standards,
allowing us to do programming. The science consists of a broad and deep theory
with predictive power, allowing us to understand programming. Ideally, the science
should explain the technology in a way that is as direct and useful as possible.

If either part is left out, we are no longer doing programming. Without the
technology, we are doing pure mathematics. Without the science, we are doing a
craft, i.e., we lack deep understanding. Teaching programming correctly therefore
means teaching both the technology (current tools) and the science (fundamental
concepts). Knowing the tools prepares the student for the present. Knowing the
concepts prepares the student for future developments.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

More than a craft

Despite many efforts to introduce a scientific foundation, programming is almost
always taught as a craft. It is usually taught in the context of one (or a few)
programming language(s) (e.g., Java, complemented with Haskell, Scheme, or Pro-
log). The historical accidents of the particular languages chosen are interwoven to-
gether so closely with the fundamental concepts that the two cannot be separated.
There is a confusion between tools and concepts. What’s more, different schools of
thought have developed, based on different ways of viewing programming, called
“paradigms”: object-oriented, logic, functional, etc. Each school of thought has its
own science. The unity of programming as a single discipline has been lost.

Teaching programming in this fashion is like having separate schools of bridge
building: one school teaches how to build wooden bridges and another school teaches
how to build iron bridges. Graduates of either school would implicitly consider the
restriction to wood or iron as fundamental and would not think of using wood and
iron together.

The result is that programs suffer from poor design. We give an example based
on Java, but the problem exists in all languages to some degree. Concurrency in
Java is complex to use and expensive in computational resources. Because of these
difficulties, Java-taught programmers conclude that concurrency is a fundamentally
complex and expensive concept. Program specifications are designed around the
difficulties, often in a contorted way. But these difficulties are not fundamental
at all. There are forms of concurrency that are quite useful and yet as easy to
program with as sequential programs (e.g., stream programming as exemplified by
Unix pipes). Furthermore, it is possible to implement threads, the basic unit of
concurrency, almost as cheaply as procedure calls. If the programmer were taught
about concurrency in the correct way, then he or she would be able to specify
for and program in systems without concurrency restrictions (including improved
versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of code.
They provide a rich set of abstractions and syntax. How can we separate the
languages’ fundamental concepts, which underlie their success, from their historical
accidents? The kernel language approach shows one way. In this approach, a
practical language is translated into a kernel language that consists of a small
number of programmer-significant elements. The rich set of abstractions and syntax
is encoded in the kernel language. This gives both programmer and student a
clear insight into what the language does. The kernel language has a simple
formal semantics that allows reasoning about program correctness and complexity.
This gives a solid foundation to the programmer’s intuition and the programming
techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by a

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

g3
L70ctraCl

small set of closely related kernel languages. It follows that the kernel languag:
approach is a truly language-independent way to study programming. Since any
given language translates into a kernel language that is a subset of a larger, more
complete kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of the
scientific method. It is a successful approach that is used in all the exact sciences.
It gives a deep understanding that has predictive power. For example, structural
science lets one design all bridges (whether made of wood, iron, both, or anything
else) and predict their behavior in terms of simple concepts such as force, energy,
stress, and strain, and the laws they obey [70].

Comparison with other approaches

Let us compare the kernel language approach with three other ways to give
programming a broad scientific basis:

® A foundational calculus, like the A calculus or 7 calculus, reduces programming to
a minimal number of elements. The elements are chosen to simplify mathematical
analysis, not to aid programmer intuition. This helps theoreticians, but is not
particularly useful to practicing programmers. Foundational calculi are useful for
studying the fundamental properties and limits of programming a computer, not
for writing or reasoning about general applications.

® A virtual machine defines a language in terms of an implementation on an ideal-
ized machine. A virtual machine gives a kind of operational semantics, with concepts
that are close to hardware. This is useful for designing computers, implementing
languages, or doing simulations. It is not useful for reasoning about programs and
their abstractions.

®» A multiparadigm language is a language that encompasses several programming
paradigms. For example, Scheme is both functional and imperative [43], and Leda
has elements that are functional, object-oriented, and logical [31]. The usefulness
of a multiparadigm language depends on how well the different paradigms are
integrated.

The kernel language approach combines features of all these approaches. A well-
designed kernel language covers a wide range of concepts, like a well-designed
multiparadigm language. If the concepts are independent, then the kernel language
can be given a simple formal semantics, like a foundational calculus. Finally, the
formal semantics can be a virtual machine at a high level of abstraction. This makes
it easy for programmers to reason about programs.

Designing abstractions

The second goal of the book is to teach how to design programming abstractions.
The most difficult work of programmers, and also the most rewarding, is not writing

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

programs but rather designing abstractions. Programming a computer is prima.i,
designing and using abstractions to achieve new goals. We define an abstraction
loosely as a tool or device that solves a particular problem. Usually the same
abstraction can be used to solve many different problems. This versatility is one of
the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automobiles.
Abstractions can be classified into a hierarchy depending on how specialized they
are (e.g., “pencil” is more specialized than “writing instrument,” but both are
abstractions).

Abstractions are particularly numerous inside computer systems. Modern com-
puters are highly complex systems consisting of hardware, operating system, mid-
dleware, and application layers, each of which is based on the work of thousands
of people over several decades. They contain an enormous number of abstractions,
working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not too much of an exaggeration to say that civilization is built on
successful abstractions [153]. New ones are being designed every day. Some ancient
ones, like the wheel and the arch, are still with us. Some modern ones, like the
cellular phone, quickly become part of our daily life.

We use the following approach to achieve the second goal. We start with program-
ming concepts, which are the raw materials for building abstractions. We introduce
most of the relevant concepts known today, in particular lexical scoping, higher-
order programming, compositionality, encapsulation, concurrency, exceptions, lazy
execution, security, explicit state, inheritance, and nondeterministic choice. For each
concept, we give techniques for building abstractions with it. We give many exam-
ples of sequential, concurrent, and distributed abstractions. We give some general
laws for building abstractions. Many of these general laws have counterparts in
other applied sciences, so that books like [63], [70], and [80] can be an inspiration
to programmers.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

®» The computation-based approach presents programming as a way to define

1. Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential
equations. They do not have to be material entities!

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

executions on machines. It grounds the student’s intuition in the real world ©,
means of actual executions on real systems. This is especially effective with an
interactive system: the student can create program fragments and immediately see
what they do. Reducing the time between thinking “what if” and seeing the result
is an enormous aid to understanding. Precision is not sacrificed, since the formal
semantics of a program can be given in terms of an abstract machine.

® The logic-based approach presents programming as a branch of mathematical
logic. Logic does not speak of execution but of program properties, which is a
higher level of abstraction. Programs are mathematical constructions that obey
logical laws. The formal semantics of a program is given in terms of a mathematical
logic. Reasoning is done with logical assertions. The logic-based approach is harder
for students to grasp yet it is essential for defining precise specifications of what
programs do.

Like Structure and Interpretation of Computer Programs [1, 2], our book mostly
uses the computation-based approach. Concepts are illustrated with program frag-
ments that can be run interactively on an accompanying software package, the
Mozart Programming System [148]. Programs are constructed with a building-block
approach, using lower-level abstractions to build higher-level ones. A small amount
of logical reasoning is introduced in later chapters, e.g., for defining specifications
and for using invariants to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of the book are all carefully chosen subsets of Oz. Why did we
choose Oz? The main reason is that it supports the kernel language approach well.
Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation
models. The models are designed not just with formal simplicity in mind (although
it is important), but on the basis of how a programmer can express himself or
herself and reason within the model. There are many different practical computation
models, with different levels of expressiveness, different programming techniques,
and different ways of reasoning about them. We find that each model has its domain
of application. This book explains many of these models, how they are related, how
to program in them, and how to combine them to greatest advantage.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

More is not better (or worse), just different

All computation models have their place. It is not true that models with more
concepts are better or worse. This is because a new concept is like a two-edged
sword. Adding a concept to a computation model introduces new forms of expres-
sion, making some programs simpler, but it also makes reasoning about programs
harder. For example, by adding explicit state (mutable variables) to a functional
programming model we can express the full range of object-oriented programming
techniques. However, reasoning about object-oriented programs is harder than rea-
soning about functional programs. Functional programming is about calculating
values with mathematical functions. Neither the values nor the functions change
over time. Explicit state is one way to model things that change over time: it pro-
vides a container whose content can be updated. The very power of this concept
makes it harder to reason about.

The importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same
program. We find that this is not at all the case. This is because models are not just
monolithic blocks with nothing in common. On the contrary, they have much in
common. For example, the differences between declarative and imperative models
(and between concurrent and sequential models) are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind
of epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for a
well-written program to use different models. At this early point this answer may
seem cryptic. It will become clear later in the book.

An important principle we will see in the book is that concepts traditionally
associated with one model can be used to great effect in more general models.
For example, the concepts of lexical scoping and higher-order programming, which
are usually associated with functional programming, are useful in all models. This
is well-known in the functional programming community. Functional languages
have long been extended with explicit state (e.g., Scheme [43] and Standard
ML [145, 213]) and more recently with concurrency (e.g., Concurrent ML [176]
and Concurrent Haskell [167, 165]).

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

The limits of single models

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

® Object-oriented languages encourage the overuse of state and inheritance. Ob-
jects are stateful by default. While this seems simple and intuitive, it actually
complicates programming, e.g., it makes concurrency difficult (see section 8.2).
Design patterns, which define a common terminology for describing good program-
ming techniques, are usually explained in terms of inheritance [66]. In many cases,
simpler higher-order programming techniques would suffice (see section 7.4.7). In
addition, inheritance is often misused. For example, object-oriented graphical user
interfaces often recommend using inheritance to extend generic widget classes with
application-specific functionality (e.g., in the Swing components for Java). This is
counter to separation of concerns.

® Functional languages encourage the overuse of higher-order programming. Typical
examples are monads and currying. Monads are used to encode state by threading it
throughout the program. This makes programs more intricate but does not achieve
the modularity properties of true explicit state (see section 4.8). Currying lets you
apply a function partially by giving only some of its arguments. This returns a new
function that expects the remaining arguments. The function body will not execute
until all arguments are there. The flip side is that it is not clear by inspection
whether a function has all its arguments or is still curried (“waiting” for the rest).

= Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of Horn
clauses, which resemble simple logical axioms in an “if-then” style. Many algorithms
are obfuscated when written in this style. Backtracking-based search must always
be used even though it is almost never needed (see [217]).

These examples are to some extent subjective; it is difficult to be completely
objective regarding good programming style and language expressiveness. Therefore
they should not be read as passing any judgment on these models. Rather, they are
hints that none of these models is a panacea when used alone. Each model is well-
adapted to some problems but less to others. This book tries to present a balanced
approach, sometimes using a single model in isolation but not shying away from
using several models together when it is appropriate.

Teaching from the book

We explain how the book fits in an informatics curriculum and what courses
can be taught with it. By informatics we mean the whole field of information
technology, including computer science, computer engineering, and information

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

systems. Informatics is sometimes called computing.
Role in informatics curriculum

Let us consider the discipline of programming independent of any other domain in
informatics. In our experience, it divides naturally into three core topics:

1. Concepts and techniques
2. Algorithms and data structures

3. Program design and software engineering

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught early
on, so that students avoid bad habits. However, this is only part of the story since
students need to know about concepts to express their designs. Parnas has used an
approach that starts with topic (3) and uses an imperative computation model [161].
Because this book uses many computation models, we recommend using it to teach
(1) and (3) concurrently, introducing new concepts and design principles together.
In the informatics program at the Université catholique de Louvain at Louvain-
la-Neuve, Belgium (UCL), we attribute eight semester-hours to each topic. This
includes lectures and lab sessions. Together the three topics make up one sixth of
the full informatics curriculum for licentiate and engineering degrees.

There is another point we would like to make, which concerns how to teach
concurrent programming. In a traditional informatics curriculum, concurrency is
taught by extending a stateful model, just as chapter 8 extends chapter 6. This
is rightly considered to be complex and difficult to program with. There are
other, simpler forms of concurrent programming. The declarative concurrency of
chapter 4 is much simpler to program with and can often be used in place of stateful
concurrency (see the epigraph that starts chapter 4). Stream concurrency, a simple
form of declarative concurrency, has been taught in first-year courses at MIT and
other institutions. Another simple form of concurrency, message passing between
threads, is explained in chapter 5. We suggest that both declarative concurrency
and message-passing concurrency be part of the standard curriculum and be taught
before stateful concurrency.

Courses

We have used the book as a textbook for several courses ranging from second-
year undergraduate to graduate courses [175, 220, 221]. In its present form, the
book is not intended as a first programming course, but the approach could likely
be adapted for such a course.? Students should have some basic programming

2. We will gladly help anyone willing to tackle this adaptation.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

g3
L70c 11l

experience (e.g., a practical introduction to programming and knowledge of simip.-
data structures such as sequences, sets, and stacks) and some basic mathematical
knowledge (e.g., a first course on analysis, discrete mathematics, or algebra). The
book has enough material for at least four semester-hours worth of lectures and as
many lab sessions. Some of the possible courses are:

® An undergraduate course on programming concepts and techniques. Chapter 1
gives a light introduction. The course continues with chapters 2 through 8. Depend-
ing on the desired depth of coverage, more or less emphasis can be put on algorithms
(to teach algorithms along with programming), concurrency (which can be left out
completely, if so desired), or formal semantics (to make intuitions precise).

® An undergraduate course on applied programming models. This includes rela-
tional programming (chapter 9), specific programming languages (especially Erlang,
Haskell, Java, and Prolog), graphical user interface programming (chapter 10), dis-
tributed programming (chapter 11), and constraint programming (chapter 12). This
course is a natural sequel to the previous one.

= An undergraduate course on concurrent and distributed programming (chap-
ters 4, 5, 8, and 11). Students should have some programming experience. The
course can start with small parts of chapters 2, 3, 6, and 7 to introduce declarative
and stateful programming.

m A graduate course on computation models (the whole book, including the seman-
tics in chapter 13). The course can concentrate on the relationships between the
models and on their semantics.

The book’s Web site has more information on courses, including transparencies
and lab assignments for some of them. The Web site has an animated interpreter
that shows how the kernel languages execute according to the abstract machine
semantics. The book can be used as a complement to other courses:

® Part of an undergraduate course on constraint programming (chapters 4, 9,
and 12).

m Part of a graduate course on intelligent collaborative applications (parts of the
whole book, with emphasis on part II). If desired, the book can be complemented
by texts on artificial intelligence (e.g., [179]) or multi-agent systems (e.g., [226]).

= Part of an undergraduate course on semantics. All the models are formally defined
in the chapters that introduce them, and this semantics is sharpened in chapter 13.
This gives a real-sized case study of how to define the semantics of a complete
modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a
practical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these fragments,
course lectures can have live interactive demonstrations of the concepts. We find
that students very much appreciate this style of lecture.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

g3
L70ctraCl

Each chapter ends with a set of exercises that usually involve some programmuui,.
They can be solved on the Mozart system. To best learn the material in the chapter,
we encourage students to do as many exercises as possible. Exercises marked
(advanced exercise) can take from several days up to several weeks. Exercises
marked (research project) are open-ended and can result in significant research
contributions.

Software

A useful feature of the book is that all program fragments can be run on a software
platform, the Mozart Programming System. Mozart is a full-featured production-
quality programming system that comes with an interactive incremental devel-
opment environment and a full set of tools. It compiles to an efficient platform-
independent bytecode that runs on many varieties of Unix and Windows, and on
Mac OS X. Distributed programs can be spread out over all these systems. The
Mozart Web site, http://www.mozart-oz.org, has complete information, includ-
ing downloadable binaries, documentation, scientific publications, source code, and
mailing lists.

The Mozart system implements efficiently all the computation models covered
in the book. This makes it ideal for using models together in the same program
and for comparing models by writing programs to solve a problem in different
models. Because each model is implemented efficiently, whole programs can be
written in just one model. Other models can be brought in later, if needed, in a
pedagogically justified way. For example, programs can be completely written in an
object-oriented style, complemented by small declarative components where they
are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system is
released with full source code under an Open Source license agreement. The first
public release was in 1995. The first public release with distribution support was
in 1999. The book is based on an ideal implementation that is close to Mozart
version 1.3.0, released in 2003. The differences between the ideal implementation
and Mozart are listed on the book’s Web site.

History and acknowledgments

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. Many people contributed ideas,
implementations, tools, and applications. We are lucky to have had a coherent
vision among our colleagues for such a long period. Thanks to this, we have been
able to make progress.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

L70ctraCl

Our main research vehicle and “test bed” of new ideas is the Mozart system, whic
implements the Oz language. The system’s main designers and developers are (in
alphabetical order) Per Brand, Thorsten Brunklaus, Denys Duchier, Kevin Glynn,
Donatien Grolaux, Seif Haridi, Dragan Havelka, Martin Henz, Erik Klintskog,
Leif Kornstaedt, Michael Mehl, Martin Miiller, Tobias Miiller, Anna Neiderud,
Konstantin Popov, Ralf Scheidhauer, Christian Schulte, Gert Smolka, Peter Van
Roy, and Jérg Wiirtz. Other important contributors are (in alphabetical order)
Ilies Alouini, Raphaél Collet, Frej Drejhammer, Sameh El-Ansary, Nils Franzén,
Martin Homik, Simon Lindblom, Benjamin Lorenz, Valentin Mesaros, and Andreas
Simon. We thank Konstantin Popov and Kevin Glynn for managing the release of
Mozart version 1.3.0, which is designed to accompany the book.

We would also like to thank the following researchers and indirect contribu-
tors: Hassan Ait-Kaci, Joe Armstrong, Joachim Durchholz, Andreas Franke, Claire
Gardent, Fredrik Holmgren, Sverker Janson, Torbjérn Lager, Elie Milgrom, Jo-
han Montelius, Al-Metwally Mostafa, Joachim Niehren, Luc Onana, Marc-Antoine
Parent, Dave Parnas, Mathias Picker, Andreas Podelski, Christophe Ponsard, Mah-
moud Rafea, Juris Reinfelds, Thomas Sjéland, Fred Spiessens, Joe Turner, and Jean
Vanderdonckt.

We give special thanks to the following people for their help with material
related to the book. Raphaél Collet for co-authoring chapters 12 and 13, for his
work on the practical part of LINF1251, a course taught at UCL, and for his
help with the BTEX2¢ formatting. Donatien Grolaux for three graphical user
interface case studies (used in sections 10.4.2-10.4.4). Kevin Glynn for writing
the Haskell introduction (section 4.7). William Cook for his comments on data
abstraction. Frej Drejhammar, Sameh El-Ansary, and Dragan Havelka for their
help with the practical part of Datalogill, a course taught at KTH (the Royal
Institute of Technology, Stockholm). Christian Schulte for completely rethinking
and redeveloping a subsequent edition of Datalogill and for his comments on a
draft of the book. Ali Ghodsi, Johan Montelius, and the other three assistants
for their help with the practical part of this edition. Luis Quesada and Kevin
Glynn for their work on the practical part of INGI2131, a course taught at UCL.
Bruno Carton, Raphaél Collet, Kevin Glynn, Donatien Grolaux, Stefano Gualandi,
Valentin Mesaros, Al-Metwally Mostafa, Luis Quesada, and Fred Spiessens for their
efforts in proofreading and testing the example programs. We thank other people
too numerous to mention for their comments on the book. Finally, we thank the
members of the Department of Computing Science and Engineering at UCL, SICS
(the Swedish Institute of Computer Science, Stockholm), and the Department of
Microelectronics and Information Technology at KTH. We apologize to anyone we
may have inadvertently omitted.

How did we manage to keep the result so simple with such a large crowd of

developers working together? No miracle, but the consequence of a strong vision and
a carefully crafted design methodology that took more than a decade to create and

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Preface

g3
L70ctraC

polish.3 Around 1990, some of us came together with already strong system-builairn g
and theoretical backgrounds. These people initiated the ACCLAIM project, funded
by the European Union (1991-1994). For some reason, this project became a focal

point. Three important milestones among many were the papers by Sverker Janson
and Seif Haridi in 1991 [105] (multiple paradigms in the Andorra Kernel Language
AKL), by Gert Smolka in 1995 [199] (building abstractions in Oz), and by Seif Haridi
et al. in 1998 [83] (dependable open distribution in Oz). The first paper on Oz was
published in 1993 and already had many important ideas [89]. After ACCLAIM,
two laboratories continued working together on the Oz ideas: the Programming
Systems Lab (DFKI, Saarland University, and Collaborative Research Center SFB
378) at Saarbriicken, Germany, and the Intelligent Systems Laboratory at SICS.

The Oz language was originally designed by Gert Smolka and his students in the
Programming Systems Lab [85, 89, 90, 190, 192, 198, 199]. The well-factorized
design of the language and the high quality of its implementation are due in
large part to Smolka’s inspired leadership and his lab’s system-building expertise.
Among the developers, we mention Christian Schulte for his role in coordinating
general development, Denys Duchier for his active support of users, and Per Brand
for his role in coordinating development of the distributed implementation. In
1996, the German and Swedish labs were joined by the Department of Computing
Science and Engineering at UCL when the first author moved there. Together
the three laboratories formed the Mozart Consortium with its neutral Web site
http://www.mozart-oz.org so that the work would not be tied down to a single
institution.

This book was written using IMTEX 2¢, flex, xfig, xv, vi/vim, emacs, and Mozart,
first on a Dell Latitude with Red Hat Linux and KDE, and then on an Apple
Macintosh PowerBook G4 with Mac OS X and X11. The screenshots were taken on
a Sun workstation running Solaris. The first author thanks the Walloon Region of
Belgium for their generous support of the Oz/Mozart work at UCL in the PIRATES
and MILOS projects.

Final comments

We have tried to make this book useful both as a textbook and as a reference. It is
up to you to judge how well it succeeds in this. Because of its size, it is likely that
some errors remain. If you find any, we would appreciate hearing from you. Please
send them and all other constructive comments you may have to the following
address:

3. We can summarize the methodology in two rules (see [217] for more information).
First, a new abstraction must either simplify the system or greatly increase its expressive
power. Second, a new abstraction must have both an efficient implementation and a simple
formalization.

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

Concepts, Techniques, and Models of Computer Programming
Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

As a final word, we would like to thank our families and friends for their support
and encouragement during the four years it took us to write this book. Seif Haridi
would like to give a special thanks to his parents Ali and Amina and to his family
Eeva, Rebecca, and Alexander. Peter Van Roy would like to give a special thanks
to his parents Frans and Hendrika and to his family Marie-Thérese, Johan, and

Lucile.
Louvain-la-Neuve, Belgium PETER VAN ROY
Kista, Sweden SEIF HARIDI

September 2003

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/

